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Abstract. In this paper we quantize a free particle on a D-dimensional sphere in an unambiguous
way by converting the second-class constraint using the Stückelberg field-shifting formalism.
Furthermore, we argue that this formalism is equivalent to the BFFT (Batalin–Fradkin–Fradkina–
Tyutin) constraint conversion method and show that the energy spectrum is identical to the pure
Laplace–Beltrami operator without additional terms arising from the curvature of the sphere. We
work out the gauge symmetry generators with results consistent with those obtained through the
nonlinear implementation of the gauge symmetry.

1. Introduction

The canonical quantization of the free-particle moving in a curved space is a fundamental
theoretical problem that has been investigated intensively over the last few decades in different
settings [1–4], but remains a controversial problem in the literature. The relevance of this
problem to quantization on curvilinear surfaces is well appreciated and its quantization has
been studied both in the path-integral and in the canonical approach. The quantum picture,
however, remains troubled by operator ordering ambiguities [1] and the results following
different approaches are not in complete agreement†. While most investigations have been
aimed towards understanding the quantum nature directly from the second-class formulation,
a possible loophole to avoid problems would be the reformulation of the model as a gauge
theory.

The proposal of this paper is the construction of a gauge-invariant reformulation for the
free point particle on the spherical surface through the Stückelberg field-shifting formalism
[6]. This is possible after a nonlinear implementation of the Stückelberg symmetry through
the elimination of the Lagrange multiplier sector of the invariant theory.

The treatment of nonlinear systems as gauge theories was originally proposed by Kovner
and Rosenstein [7], using an analogy with quantum electrodynamics (QED) to disclose a
symmetry hidden in the nonlinear sigma model (NLSM). An invariant version of this model
was proposed by us [8] to explain the results of [7] using the iterative constraint conversion
approach [9]. Recently, other authors [10–12] have proposed distinct first-class versions for
the spherical model using the BFFT formalism [13]. Due to the possibility of dealing with

† For a review of the present status of this problem see [5].
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the nonlinear constraint of the massive Yang–Mills theory through the constraint conversion
technique, this problem has experienced a revival [14–16]. These works discuss the energy
spectrum of the collective mode of the theory and call into doubt the result proposed by Adkins,
Nappi and Witten (ANW) in [17].

It is worth mentioning that since the seminal work of Skyrme [18] incorporating baryons
in the NLSM low-energy description of the strong interactions, the investigation of nonlinear
theories has attracted much attention. The NLSM is a very useful model used in all areas
of physics. In condensed matter, for instance, it is used to describe systems ranging from
antiferromagnetic spin-chains to certain materials exhibiting the fractional quantum Hall effect
[19]. In lower-dimensional physics, where it possesses an exact solution [20], it has became
an important theoretical laboratory mainly due to its similarity to four-dimensional (4D) non-
Abelian gauge theories with which it shares many features such as renormalizability, asymptotic
freedom, dynamical mass generation, confinement and topological excitations. It has also
been used in the theoretical investigation of the phenomenon of fractional spin and statistics
in (2 + 1)D [21] and non-Abelian bosonization in (1 + 1)D [22].

In the study of the static properties of nucleons, carried out by Adkins et al [17], a collective
semiclassical expansion is performed by the usual decomposition of the SU(2) matrix into the
nonlinear sigma model action as

U(r, t) = A(t)U(r)A(t)−1 (1)

where the matrix A(t) as A(t) = ao + iaτ satisfies the spherical constraint,

φ1 = aiai − 1 = 0 with i = 0, 1, 2, 3. (2)

The theory becomes reduced to a nonlinear quantum mechanical model whose dynamics
is governed by a Lagrangian dependent on ai(t) and ȧi (t) playing the roles of the particle’s
coordinate and velocity, respectively. Similarly, the study of the fractional spin and statistics in
the context of the O(3) NLSM is reduced to that of the quantum rotor through the semiclassical
separation of the collective mode, reducing the problem to that of quantizing the spherical top.
Recall that the spherical rotor [4, 5] is the paradigm of the second-class constrained system with
field-dependent Dirac brackets [23]. Therefore, the ambiguities resulting from the quantization
of this model affect the above-mentioned results. This leads to the necessity of performing
new studies that may eventually shed some light on these questions.

2. The spherical gauge model

To explore the problem that affects the quantization process for the nonlinear model, let us
begin by quantizing the system using the Dirac method for second-class constraints. A free
point particle with unitary mass moving on a flat (D + 1)-dimensional Euclidean space is
restricted to the D-spherical surface by the spherical constraint in configuration space,

qiqi − R2 = 0 (3)

where R is the radius of the sphere and qi(t), i = 1, 2, . . . , D, are the coordinates of the
particle. The dynamics of the point particle are governed by the Lagrangian

L = 1
2 q̇

2 + λ(qiqi − R2). (4)

The corresponding Hamiltonian is

H = 1
2p

2
i − λ(qiqi − R2). (5)
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The constraint analysis reveals the presence of four second-class constraints

�1 = πλ

�2 = q2 − c

�3 = piqi

�4 = pipi − 2λqiqi .

(6)

The geometrical meaning of �2 and �3 is transparent. The constraint �2 = 0 restrains
the particle to move on the D-sphere surface, while �3 means that the particle momentum
remains tangential to a nonlinear surface, without a radial component during the motion. The
remaining constraints, �1 and �4, have no geometrical meaning and dynamical importance
in the theory since they are artefacts of constructing the Hamiltonian formalism from the
Lagrangian using the Legendre transformation. This occurs because the Lagrange multiplier
λ, which enforces the nonlinear constraint in the Lagrangian formalism, is assumed to be an
independent dynamical variable. In this way, the Hamiltonian formalism yields these extra
constraints to suppress the dynamics of λ and pλ.

From the last condition of (6) the Lagrange multiplier can be computed explicitly as [10]

λ = 1

2

p2

q2
. (7)

The particle’s dynamics can be described by H = 1
2p

2 and two constraints (�2, �3). The
symplectic structure on the physical phase space determined by these constraints is induced
by the Dirac brackets,

{qi, qj }∗ = {pi, pj }∗ = 0

{qi, pj }∗ = Mij

{pi, pj }∗ = Hij

(8)

where

Mij = δij − qiqj

q2

Hij = (qjpi − qipj )

q2
.

(9)

It may be stressed that the same results can be obtained from the simplified Lagrangian
formulation with the proviso that the equation of motion of the eliminated variable must be
maintained as a subsidiary condition to impart consistency in the canonical analysis. Next we
present a proposal to express it as a gauge theory using the Stückelberg field-shifting formalism.

In the literature there are alternative methods to implement this proposal. We quote the
BFFT [13] and iterative [8, 9] methods that have attracted much attention in the literature. The
BFFT conversion technique uses as many auxiliary variables as the number of second-class
constraints [13]. As mentioned, the analysis can be considerably simplified by eliminating the
multiplier sector of the phase space using the non-invariant character of the constraints [24].
The question that seems to be of importance is related to the elimination of this sector before
or after the constraint conversion. The induced gauge symmetry over the spherical model
becomes realized nonlinearly or linearly, respectively, leading to distinct consequences. In
the former case, worked out in [10], the multiplier is eliminated before the BFFT procedure,
based on its second-class character. On the other hand, without elimination of the multiplier
sector, the gauge symmetry is linearly implemented by the Stuckelberg procedure. Although
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we advocate the latter procedure mostly because of its effectiveness and simplicity, we will
show next that they indeed lead to (canonically) equivalent results.

Let us consider the construction of the Wess–Zumino (WZ) terms through the Stückelberg
mechanism,

LWZ(θ, λ) = L(λ − 1
2 θ̇ ) − L(λ)

= θqkq̇k. (10)

An equivalent procedure using the iterative conversion of the nonlinear constraints was given
in [8], whose gauge-invariant Lagrangian was found to be

L = 1
2 q̇

2
i + θ(q · q̇) + λ(q2 − R2) (11)

where θ is the WZ variable. The corresponding Hamiltonian, obtained reducing the Lagrangian
(11) to first order, is

H = 1
2p

2 + 1
2θ

2q2 − θ(q · p) − λ(q2 − R2). (12)

This theory has two chains of constraints whose primary members are

φ1 = πλ ≈ 0

ψ1 = πθ ≈ 0.
(13)

Since these constraints must satisfy some integrability condition, the presence of secondary
constraints is required, i.e.

φ2 = q2 − R2 ≈ 0

ψ2 = q · p − θq2 ≈ 0
(14)

and no more constraints are generated by following Dirac’s algorithm. Although a naive
inspection shows the presence of second-class constraints, the computation of the Dirac
matrix shows the presence of two zero modes, indicating the existence of a two distinct set
of constraints. One with two first-class constraints (ϕ(1)

k ) and other with two second-class
constraints (ϕ(2)

k ), that are identified after a diagonalization of the Dirac matrix as

ϕ
(1)
1 = φ1

ϕ
(1)
2 = φ2 − 2ψ1

(15)

and

ϕ
(2)
1 = ψ1

ϕ
(2)
2 = ψ2.

(16)

The elimination of the second-class sector is done via the Dirac bracket reduction, as
usual. It generates the following first-class Hamiltonian:

H̄ = 1

2
pk

(
δkm − qkqm

q2

)
pm (17)

where the reduced first-class constraints now read

ϕ
(1)
1 → ϕ̄

(1)
1 = φ1

ϕ
(1)
2 → ϕ̄

(1)
2 = φ2.

(18)
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Similarly, the original Poisson brackets are now mapped into Dirac brackets,

{qi, qj }∗ = 0

{pi, pj }∗ = 0 (19)

{qi, pj }∗ = δij .

Note that the Dirac brackets for this partial reduction of constraints have a canonical structure.
This just reflects the result of the well known Maskawa–Nakashima theorem [25]. This
new Hamiltonian and symplectic structure define a pure first-class problem. By simple
inspection the correct equation of motion may be obtained from these objects. The symmetry
transformations are generated by these constraints as δiO = εi{O, ϕ̄

(1)
i }∗ (i = 1, 2 and

O = λ, qk, pk),

δ1λ = ε1

δ1qi = δ1pi = 0
(20)

and

δ2λ = 0

δ2qi = 0

δ2pi = −2ε2qi.

(21)

Note that the coordinates qi are null eigenvectors of the matrix Mij , defined in (9), acting as
a phase space metric in the reduced Hamiltonian H̄ in (17). To complete this discussion it is
important to recall that the computation of the two sets of constraints given in (15) and (16) was
imperative to the development of this procedure. However, the splitting computation of the
original set of constraints may be obscure. To avoid this problem a systematic alternative, based
on the reduction of the set of constraints with the elimination of the superfluous constraints is
now elaborated that will illuminate the full power of the Stückelberg formalism.

Let us recall that the theory under discussion (11) is known to possess four constraints.
However, for systems with holonomous constraints imposed by Lagrange multipliers, some of
these constraints only appear in the canonical process to eliminate the dynamics associated with
the multiplier sector of variables. It is usual practice to use an improved Hamiltonian obtained
by eliminating the Lagrange multiplier sector ab initio. This will keep only the meaningful
geometrical constraints and simplify the analysis. However, recall that the equation of motion
associated with the (eliminated) multiplier sector is maintained as a consistency condition to
the canonical structure associated with the simplified Lagrangian formulation. To eliminate
the redundant constraints we proceed as follows. The Euler–Lagrange equations for θ and qi ,
are solved,

q · q̇ = 0

q̈i + θ̇qi − 2λqi = 0
(22)

respectively, which determine the Lagrange multiplier as

λ = − 1

2q2
(q̇2 − θ̇q2). (23)

The arbitrariness present in the multiplier reflects the gauge freedom induced over the system.
Bringing this relation back into the WZ theory we find a new canonical structure given by the
modified Hamiltonian,

H̃ = 1

2R2
q2p2 − q2

R2
(q · p)θ +

1

2R2
θ2(q2)2 (24)
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and the first-class, strongly involutive constraint

ω1 = q2 − R2 − 2πθ ≈ 0 (25)

which has no time evolution since,

ω̇1 = {ω1, H̃ } = 0. (26)

On the other hand, consistency with the first equation in (22) requires πθ to have no time
evolution of its own,

0 = π̇θ = {πθ , H̃ }. (27)

This condition imposes a new constraint over the system as

ω2 = q · p − θq2. (28)

This canonical structure is similar to that obtained in [10] and identical to that given in [26],
after a convenient interchange the WZ variables (θ � πθ) with a corresponding change of
signs.

Note that after the elimination of the multiplier λ some aspects of the model have changed.
Here, πθ is not a constraint but it is a canonical variable of the model that is absorbed by the
nonlinear constraint, deforming the original spherical surface and destroying the constraint
hierarchy given in (13) and (14). Consequently, after the exceeded constraints are eliminated,
the remaining geometrical ones, and the gauge-invariant model described by the Hamiltonian
(24) are equivalent to the original first-class system given in (12). This reduced gauge-invariant
model has two first-class constraints ω1 and ω2, that obey the strongly involutive algebra,

{q2 − R2 − 2πθ , H̃ } = 0

{q · p − θq2, H̃ } = 0
(29)

which is in agreement with the issues of [10, 26]. These first-class constraints generate
the following infinitesimal gauge transformations on the canonical variables in the complete
extended space:

δ1qi = ε1{qi, ω1} = 0

δ1pi = ε1{pi, ω1} = −2ε1qi

δ1πθ = ε1{πθ , ω1} = 0

δ1θ = ε1{θ, ω1} = −2ε1

(30)

and
δ2qi = ε2{qi, ω2} = ε2qi

δ2pi = ε2{pi, ω2} = −ε2(pi − 2θqi)

δ2πθ = ε2{πθ , ω2} = ε2q
2
i

δ2θ = ε2{θ, ω2} = 0

(31)

that agrees with those obtained in [7, 8, 10, 26]. The finite induced WZ gauge symmetries
within the extended phase space are obtained from the gauge generating constraints by
successive application on the canonical and the extended phase space variables,

qi → eε2qi

pi → e−ε2pi + 2qi(θeε2/2 − (θ + ε1)e
−ε2/2)

θ → θ − 2ε1

π → π + (1 − e−ε2)q2.

(32)
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Note that the group of transformations generated by the first-class constraints act nonlinearly
on the extended phase space.

We stress that Kovner–Rosenstein’s hidden symmetry is indeed an induced symmetry of
the Wess–Zumino sector over the phase space of the theory. This effect, as discussed above
is clearly independent of the particular method of constraint conversion, being quite unique.
Indeed, the constraint ω1 in (25) is immediately transformed into the KR constraint generator
with a special value for πθ . Interestingly, this also corresponds to a choice of initial condition
in (27). This is revealed by gauge-fixing the WZ sector in such a way as to recover the spherical
constraint as the symmetry generator of the KR symmetry. Either way, this may be achieved
by adding the gauge-fixing constraint,

ω3 = πθ (33)

to the set ω1 and ω2. The � = ω1|πθ
constraint now plays the role of a Gauss law generator for

the KR symmetry in the original phase space, under the Dirac bracket algebra generated by the
second-class constraints ω2 and ω3. This reduced algebra has the same canonical structure as
in (19) which is another illustration of the Maskawa–Nakashima theorem [25]. The dynamics
is controlled by the Hamiltonian (24) which on the constraint shell ωi ≈ 0 reads

HKR = 1

2R2
q2pk

(
δkm − qkqm

q2

)
pm (34)

which is seen to be the one postulate in [7]. This purely first-class Hamiltonian structure leads
to the correct field equations under the induced Dirac bracket algebra.

To realize the quantization it is necessary to introduce a gauge-fixing term in order to fix
the first-class nature of the Gauss law. Choosing the gauge condition as

( = pD = 0 (35)

which is the canonical momentum conjugate to the coordinate qD and removes the dynamic
of this coordinate. The Poisson brackets between the constraints � and ( is

{�,(} = 2qD (36)

and as qD �= 0 on the spherical surface, they form a set of second-class constraints and the
theory passes to having two-dimensional remaining phase space variables. The Dirac brackets
among the independent variables are

{qα, qβ}∗ = 0

{qα, pβ}∗ = δαβ (37)

{pα, pβ}∗ = 0

whereα andβ represent the independent phase space variables. The non-invariant Hamiltonian
in the reduced phase space is

H = 1

2R2
pαg

αβpβ (38)

with the non-singular phase space metric,

gαβ = δαβ − qαqβ

R2
. (39)

This Hamiltonian formulation of the problem has also been found by Abdalla and Banerjee
[5] following a purely second-class approach to quantize the system. In the following we follow
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[5] closely in order to find the spectrum of the skyrmion. Since this system is unconstrained
the velocities obtained from the Hamiltonian equation of motion for qα ,

q̇α = gαβpβ (40)

can be obtained in an unambiguous form from the canonical momenta by inverting the above
equation,

pβ = gαβq̇α (41)

where gαβ is the inverse of (39), given by

gαβ = δαβ +
qαqβ

R2 − q2
. (42)

In the quantization of nonlinear models the ordering of phase space fields cannot be
neglected since the Dirac brackets are field dependent, as carried out in [27]. Therefore, there
arises an important question as to how one should settle the quantum Hamiltonian from its
corresponding classical description. The answer resides on the preservation of the classical
symmetries in the quantum scenario [3]. In this way the corresponding quantum Hamiltonian
is uniquely determined. Based in the quantum process developed in [3] the quantization of the
reduced nonlinear model (38) is accomplished if the reduced Hamiltonian is replaced by the
corresponding Laplace–Beltrami operator defined as

Ĥ = − 1
2g

−1/2∂αg
αβg1/2∂β

= − 1
2 (R

2 − q2)−1/2∂αg
αβ(R2 − q2)1/2∂β (43)

where ∂α = ∂
∂qα

are the derivatives with respect to theD-dimensional curved space coordinates,
and g is the determinant of the metric gαβ given by

det[gαβ] = exp tr ln

(
δαβ +

aαaβ

R2 − q2

)

= exp tr
qαqβ

q2
ln

(
1 +

q2

R2 − q2

)

= R2

R2 − q2
. (44)

Due to this, the Hamiltonian operator (43) is related to the angular momentum in the reduced
space,

Lαβ = qαpβ − qβpα = −ih̄(qα∂β − qβ∂α)

LαD = qαpD − qDpα = −ih̄qD∂β = −ih̄(R2 − q2)1/2∂β
(45)

and therefore it is rewritten as

Ĥ =
∑
αβ

L2
αβ

2R2
. (46)

Thus, we find that the quantum Hamiltonian is the conventional Schrödinger operator without
any extra curvature term. Consequently, the energy spectrum reads

E = 1

2R2
l(l + D − 1) (47)

in agreement with the result obtained by other authors [5, 28–30].



Stückelberg field-shifting quantization of a free particle 6455

At this stage it is interesting to put our result in a more realistic framework that might
shed some light over the question. To this end we focus our discussions on the Skyrme model.
There D = 3 and consequently, the energy spectrum (47) becomes

E = 1

2R2
l(l + 2) (48)

that agrees with the result proposed by ANW [17]. This completes our discussion.

3. Conclusion

In summary, the gauge symmetry of the nonlinear model is induced by phase space extension
methods using the Stückelberg field-shifting constraint conversion, displaying the equivalence
with the constraint conversion methods. Afterwards the energy spectrum was obtained without
an additional constant term arising from the curvature of the D-sphere. Subsequently, the
Skyrme model was considered to study this scenario and the energy spectrum was also obtained
without extra terms.

To conclude this section it is important to give some views concerning the reduction process
for the multiplier sector: whether it is reduced before or after the constraint conversion leads
to distinct realizations of the WZ symmetry. We have verified that the procedure of reduction
commutes with the constraint conversion process, leading to results which are canonically
equivalent. This seems to be of importance for the analysis of non-Abelian second-class
systems as gauge theories where quadratic constraints are intrinsically defined. Finally, it
becomes clear that the question regarding the construction of the generators of the WZ gauge
symmetry cannot be tackled from this approach, in the sense that there is no plausible argument
that favours any of the constraints as the leader of the constraint chain. If this question becomes
an important issue for the analysis of the problem at hand then the use of the non-Abelian BFFT
method or the iterative constraint process seems unavoidable.
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